Exploiting Problem Structure for Distributed Constraint Optimization
نویسندگان
چکیده
Distributed constraint optimization imposes considerable complexity in agents’ coordinated search for an optimal solution. However, in many application domains, problems often exhibit special structures that can be exploited to facilitate more efficient problem solving. One of the most recurrent structures involves disparity among subpmblems. We present a coordination mechanism, Anchor&Ascend, for distributed constraint optimization that takes advantage of disparity among subpmblems to efficiently guide distributed local search for global optimality. The coordination mechanism assigns different overlapping subpmblems to agents who must interact and iteratively converge on a solution. In particular, an anchor agent who conducts local best first search to optimize its subsolution interacts with the rest of the agents who perform distributed constraint satisfaction to enforce problem constraints and constraints imposed by the anchor agent. We focus our study on the well-known NP-complete job shop scheduling problem. We define and study two problem structure measures, disparity ratio and disparity composition ratio. We experimentally evaluated the effectiveness of the Anchor&Ascend mechanism on a suite of job shop scheduling problems over a wide range of values of disparity composition. Our experimental results show that (1) considerable advantage can be obtained by explicitly exploiting disparity (2) disparity composition ratio plays a more important role than disparity ratio in finding high quality solution with little computational cost.
منابع مشابه
Optimal Allocation of Distributed Generation in Microgrid by Considering Load Modeling
Recent increment in carbon emission due to the dependency on fossil fuels in power generation sector is a critical issue in the last decade. The motivation to Distributed Generation (DG) in order to catch low carbon networks is rising. This research seeks to experience DG existence in local energy servicing in microgrid structure. Optimal sizing and placement of DG units is followed by this pap...
متن کاملExploiting the Structure of Distributed Constraint Optimization Problems (Doctoral Consortium)
In the proposed thesis, we study Distributed Constraint Optimization Problems (DCOPs), which are problems where several agents coordinate with each other to optimize a global cost function. The use of DCOPs has gained momentum, due to their capability of addressing complex and naturally distributed problems. However, the adoption of DCOP on large problems faces two main limitations: (1) Modelin...
متن کاملExploiting the Structure of Distributed Constraint Optimization Problems
Introduction In the proposed thesis, we study Distributed Constraint Optimization Problems (DCOPs), which are problems where several agents coordinate with each other to optimize a global cost function. The use of DCOPs has gained momentum, due to their capability of addressing complex and naturally distributed problems. A majority of the work in DCOP addresses the resolution problem by detachi...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملDistributed constraint optimization with structured resource constraints
Distributed constraint optimization (DCOP) provides a framework for coordinated decision making by a team of agents. Often, during the decision making, capacity constraints on agents’ resource consumption must be taken into account. To address such scenarios, an extension of DCOPResource Constrained DCOPhas been proposed. However, certain type of resources have an additional structure associate...
متن کامل